Room temperature water Leidenfrost droplets.
نویسندگان
چکیده
We experimentally investigate the Leidenfrost effect at pressures ranging from 1 to 0.05 atmospheric pressure. As a direct consequence of the Clausius–Clapeyron phase diagram of water, the droplet temperature can be at ambient temperature in a non-sophisticated lab environment. Furthermore, the lifetime of the Leidenfrost droplet is significantly increased in this low pressure environment. The temperature and pressure dependence of the evaporation rate is successfully tested against a recently proposed model. These results may pave the way for reaching efficient Leidenfrost micro-fluidic and milli-fluidic applications.
منابع مشابه
Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon
The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a "cold Leidenfrost phenomeno...
متن کاملLotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets.
A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong...
متن کاملEnhanced Droplet Control by Transition Boiling
A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transiti...
متن کاملTailoring Hydrodynamics of Non-wetting Droplets with Nano-engineered Surfaces
Considering that contacts between liquid and solid are ubiquitous in almost all energy processes, including steam turbines, oil pumping, condensers and boilers, the efficiency of energy transportation can be maximized such that the liquid-solid interaction is optimized. Texture based super-hydrophobicity, also known as the Lotus effect, has been one of the most extensively studied topics in the...
متن کاملTake off of small Leidenfrost droplets.
We put in evidence the unexpected behavior of Leidenfrost droplets at the later stage of their evaporation. We predict and observe that, below a critical size Rl, the droplets spontaneously take off due to the breakdown of the lubrication regime. We establish the theoretical relation between the droplet radius and its elevation. We predict that the vapor layer thickness increases when the dropl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 9 40 شماره
صفحات -
تاریخ انتشار 2013